3.3.100 \(\int \frac {1}{\sqrt {x} (a+b x^2)^2} \, dx\) [300]

3.3.100.1 Optimal result
3.3.100.2 Mathematica [A] (verified)
3.3.100.3 Rubi [A] (verified)
3.3.100.4 Maple [A] (verified)
3.3.100.5 Fricas [C] (verification not implemented)
3.3.100.6 Sympy [A] (verification not implemented)
3.3.100.7 Maxima [A] (verification not implemented)
3.3.100.8 Giac [A] (verification not implemented)
3.3.100.9 Mupad [B] (verification not implemented)

3.3.100.1 Optimal result

Integrand size = 15, antiderivative size = 218 \[ \int \frac {1}{\sqrt {x} \left (a+b x^2\right )^2} \, dx=\frac {\sqrt {x}}{2 a \left (a+b x^2\right )}-\frac {3 \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{4 \sqrt {2} a^{7/4} \sqrt [4]{b}}+\frac {3 \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{4 \sqrt {2} a^{7/4} \sqrt [4]{b}}-\frac {3 \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{8 \sqrt {2} a^{7/4} \sqrt [4]{b}}+\frac {3 \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{8 \sqrt {2} a^{7/4} \sqrt [4]{b}} \]

output
-3/8*arctan(1-b^(1/4)*2^(1/2)*x^(1/2)/a^(1/4))/a^(7/4)/b^(1/4)*2^(1/2)+3/8 
*arctan(1+b^(1/4)*2^(1/2)*x^(1/2)/a^(1/4))/a^(7/4)/b^(1/4)*2^(1/2)-3/16*ln 
(a^(1/2)+x*b^(1/2)-a^(1/4)*b^(1/4)*2^(1/2)*x^(1/2))/a^(7/4)/b^(1/4)*2^(1/2 
)+3/16*ln(a^(1/2)+x*b^(1/2)+a^(1/4)*b^(1/4)*2^(1/2)*x^(1/2))/a^(7/4)/b^(1/ 
4)*2^(1/2)+1/2*x^(1/2)/a/(b*x^2+a)
 
3.3.100.2 Mathematica [A] (verified)

Time = 0.24 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.59 \[ \int \frac {1}{\sqrt {x} \left (a+b x^2\right )^2} \, dx=\frac {\frac {4 a^{3/4} \sqrt {x}}{a+b x^2}-\frac {3 \sqrt {2} \arctan \left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )}{\sqrt [4]{b}}+\frac {3 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )}{\sqrt [4]{b}}}{8 a^{7/4}} \]

input
Integrate[1/(Sqrt[x]*(a + b*x^2)^2),x]
 
output
((4*a^(3/4)*Sqrt[x])/(a + b*x^2) - (3*Sqrt[2]*ArcTan[(Sqrt[a] - Sqrt[b]*x) 
/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])])/b^(1/4) + (3*Sqrt[2]*ArcTanh[(Sqrt[2] 
*a^(1/4)*b^(1/4)*Sqrt[x])/(Sqrt[a] + Sqrt[b]*x)])/b^(1/4))/(8*a^(7/4))
 
3.3.100.3 Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 241, normalized size of antiderivative = 1.11, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.667, Rules used = {253, 266, 755, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {x} \left (a+b x^2\right )^2} \, dx\)

\(\Big \downarrow \) 253

\(\displaystyle \frac {3 \int \frac {1}{\sqrt {x} \left (b x^2+a\right )}dx}{4 a}+\frac {\sqrt {x}}{2 a \left (a+b x^2\right )}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {3 \int \frac {1}{b x^2+a}d\sqrt {x}}{2 a}+\frac {\sqrt {x}}{2 a \left (a+b x^2\right )}\)

\(\Big \downarrow \) 755

\(\displaystyle \frac {3 \left (\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {a}}+\frac {\int \frac {\sqrt {b} x+\sqrt {a}}{b x^2+a}d\sqrt {x}}{2 \sqrt {a}}\right )}{2 a}+\frac {\sqrt {x}}{2 a \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {3 \left (\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {a}}+\frac {\frac {\int \frac {1}{x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {b}}+\frac {\int \frac {1}{x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {b}}}{2 \sqrt {a}}\right )}{2 a}+\frac {\sqrt {x}}{2 a \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {3 \left (\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {a}}+\frac {\frac {\int \frac {1}{-x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int \frac {1}{-x-1}d\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}\right )}{2 a}+\frac {\sqrt {x}}{2 a \left (a+b x^2\right )}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {3 \left (\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}\right )}{2 a}+\frac {\sqrt {x}}{2 a \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {3 \left (\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{b} \left (x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}\right )}{\sqrt [4]{b} \left (x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}\right )}{2 a}+\frac {\sqrt {x}}{2 a \left (a+b x^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {3 \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{b} \left (x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}\right )}{\sqrt [4]{b} \left (x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}\right )}{2 a}+\frac {\sqrt {x}}{2 a \left (a+b x^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {3 \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt {b}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}}{x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt [4]{a} \sqrt {b}}}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}\right )}{2 a}+\frac {\sqrt {x}}{2 a \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {3 \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}+\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}\right )}{2 a}+\frac {\sqrt {x}}{2 a \left (a+b x^2\right )}\)

input
Int[1/(Sqrt[x]*(a + b*x^2)^2),x]
 
output
Sqrt[x]/(2*a*(a + b*x^2)) + (3*((-(ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^ 
(1/4)]/(Sqrt[2]*a^(1/4)*b^(1/4))) + ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a 
^(1/4)]/(Sqrt[2]*a^(1/4)*b^(1/4)))/(2*Sqrt[a]) + (-1/2*Log[Sqrt[a] - Sqrt[ 
2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x]/(Sqrt[2]*a^(1/4)*b^(1/4)) + Log[Sq 
rt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x]/(2*Sqrt[2]*a^(1/4)*b^ 
(1/4)))/(2*Sqrt[a])))/(2*a)
 

3.3.100.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 253
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(c*x 
)^(m + 1))*((a + b*x^2)^(p + 1)/(2*a*c*(p + 1))), x] + Simp[(m + 2*p + 3)/( 
2*a*(p + 1))   Int[(c*x)^m*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, m 
}, x] && LtQ[p, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
3.3.100.4 Maple [A] (verified)

Time = 1.78 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.57

method result size
derivativedivides \(\frac {\sqrt {x}}{2 a \left (b \,x^{2}+a \right )}+\frac {3 \left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{16 a^{2}}\) \(124\)
default \(\frac {\sqrt {x}}{2 a \left (b \,x^{2}+a \right )}+\frac {3 \left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{16 a^{2}}\) \(124\)

input
int(1/(b*x^2+a)^2/x^(1/2),x,method=_RETURNVERBOSE)
 
output
1/2*x^(1/2)/a/(b*x^2+a)+3/16/a^2*(a/b)^(1/4)*2^(1/2)*(ln((x+(a/b)^(1/4)*x^ 
(1/2)*2^(1/2)+(a/b)^(1/2))/(x-(a/b)^(1/4)*x^(1/2)*2^(1/2)+(a/b)^(1/2)))+2* 
arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)+1)+2*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2) 
-1))
 
3.3.100.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.27 (sec) , antiderivative size = 193, normalized size of antiderivative = 0.89 \[ \int \frac {1}{\sqrt {x} \left (a+b x^2\right )^2} \, dx=\frac {3 \, {\left (a b x^{2} + a^{2}\right )} \left (-\frac {1}{a^{7} b}\right )^{\frac {1}{4}} \log \left (a^{2} \left (-\frac {1}{a^{7} b}\right )^{\frac {1}{4}} + \sqrt {x}\right ) - 3 \, {\left (-i \, a b x^{2} - i \, a^{2}\right )} \left (-\frac {1}{a^{7} b}\right )^{\frac {1}{4}} \log \left (i \, a^{2} \left (-\frac {1}{a^{7} b}\right )^{\frac {1}{4}} + \sqrt {x}\right ) - 3 \, {\left (i \, a b x^{2} + i \, a^{2}\right )} \left (-\frac {1}{a^{7} b}\right )^{\frac {1}{4}} \log \left (-i \, a^{2} \left (-\frac {1}{a^{7} b}\right )^{\frac {1}{4}} + \sqrt {x}\right ) - 3 \, {\left (a b x^{2} + a^{2}\right )} \left (-\frac {1}{a^{7} b}\right )^{\frac {1}{4}} \log \left (-a^{2} \left (-\frac {1}{a^{7} b}\right )^{\frac {1}{4}} + \sqrt {x}\right ) + 4 \, \sqrt {x}}{8 \, {\left (a b x^{2} + a^{2}\right )}} \]

input
integrate(1/(b*x^2+a)^2/x^(1/2),x, algorithm="fricas")
 
output
1/8*(3*(a*b*x^2 + a^2)*(-1/(a^7*b))^(1/4)*log(a^2*(-1/(a^7*b))^(1/4) + sqr 
t(x)) - 3*(-I*a*b*x^2 - I*a^2)*(-1/(a^7*b))^(1/4)*log(I*a^2*(-1/(a^7*b))^( 
1/4) + sqrt(x)) - 3*(I*a*b*x^2 + I*a^2)*(-1/(a^7*b))^(1/4)*log(-I*a^2*(-1/ 
(a^7*b))^(1/4) + sqrt(x)) - 3*(a*b*x^2 + a^2)*(-1/(a^7*b))^(1/4)*log(-a^2* 
(-1/(a^7*b))^(1/4) + sqrt(x)) + 4*sqrt(x))/(a*b*x^2 + a^2)
 
3.3.100.6 Sympy [A] (verification not implemented)

Time = 42.66 (sec) , antiderivative size = 316, normalized size of antiderivative = 1.45 \[ \int \frac {1}{\sqrt {x} \left (a+b x^2\right )^2} \, dx=\begin {cases} \frac {\tilde {\infty }}{x^{\frac {7}{2}}} & \text {for}\: a = 0 \wedge b = 0 \\\frac {2 \sqrt {x}}{a^{2}} & \text {for}\: b = 0 \\- \frac {2}{7 b^{2} x^{\frac {7}{2}}} & \text {for}\: a = 0 \\\frac {4 a \sqrt {x}}{8 a^{3} + 8 a^{2} b x^{2}} - \frac {3 a \sqrt [4]{- \frac {a}{b}} \log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{3} + 8 a^{2} b x^{2}} + \frac {3 a \sqrt [4]{- \frac {a}{b}} \log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{3} + 8 a^{2} b x^{2}} + \frac {6 a \sqrt [4]{- \frac {a}{b}} \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{8 a^{3} + 8 a^{2} b x^{2}} - \frac {3 b x^{2} \sqrt [4]{- \frac {a}{b}} \log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{3} + 8 a^{2} b x^{2}} + \frac {3 b x^{2} \sqrt [4]{- \frac {a}{b}} \log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{3} + 8 a^{2} b x^{2}} + \frac {6 b x^{2} \sqrt [4]{- \frac {a}{b}} \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{8 a^{3} + 8 a^{2} b x^{2}} & \text {otherwise} \end {cases} \]

input
integrate(1/(b*x**2+a)**2/x**(1/2),x)
 
output
Piecewise((zoo/x**(7/2), Eq(a, 0) & Eq(b, 0)), (2*sqrt(x)/a**2, Eq(b, 0)), 
 (-2/(7*b**2*x**(7/2)), Eq(a, 0)), (4*a*sqrt(x)/(8*a**3 + 8*a**2*b*x**2) - 
 3*a*(-a/b)**(1/4)*log(sqrt(x) - (-a/b)**(1/4))/(8*a**3 + 8*a**2*b*x**2) + 
 3*a*(-a/b)**(1/4)*log(sqrt(x) + (-a/b)**(1/4))/(8*a**3 + 8*a**2*b*x**2) + 
 6*a*(-a/b)**(1/4)*atan(sqrt(x)/(-a/b)**(1/4))/(8*a**3 + 8*a**2*b*x**2) - 
3*b*x**2*(-a/b)**(1/4)*log(sqrt(x) - (-a/b)**(1/4))/(8*a**3 + 8*a**2*b*x** 
2) + 3*b*x**2*(-a/b)**(1/4)*log(sqrt(x) + (-a/b)**(1/4))/(8*a**3 + 8*a**2* 
b*x**2) + 6*b*x**2*(-a/b)**(1/4)*atan(sqrt(x)/(-a/b)**(1/4))/(8*a**3 + 8*a 
**2*b*x**2), True))
 
3.3.100.7 Maxima [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 194, normalized size of antiderivative = 0.89 \[ \int \frac {1}{\sqrt {x} \left (a+b x^2\right )^2} \, dx=\frac {3 \, {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {b}}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {b}}} + \frac {\sqrt {2} \log \left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {3}{4}} b^{\frac {1}{4}}} - \frac {\sqrt {2} \log \left (-\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {3}{4}} b^{\frac {1}{4}}}\right )}}{16 \, a} + \frac {\sqrt {x}}{2 \, {\left (a b x^{2} + a^{2}\right )}} \]

input
integrate(1/(b*x^2+a)^2/x^(1/2),x, algorithm="maxima")
 
output
3/16*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) + 2*sqrt(b)*sq 
rt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(b))) + 2*sqrt(2)* 
arctan(-1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) - 2*sqrt(b)*sqrt(x))/sqrt(sqr 
t(a)*sqrt(b)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(b))) + sqrt(2)*log(sqrt(2)*a^(1/ 
4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(3/4)*b^(1/4)) - sqrt(2)*log( 
-sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(3/4)*b^(1/4))) 
/a + 1/2*sqrt(x)/(a*b*x^2 + a^2)
 
3.3.100.8 Giac [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 199, normalized size of antiderivative = 0.91 \[ \int \frac {1}{\sqrt {x} \left (a+b x^2\right )^2} \, dx=\frac {3 \, \sqrt {2} \left (a b^{3}\right )^{\frac {1}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{8 \, a^{2} b} + \frac {3 \, \sqrt {2} \left (a b^{3}\right )^{\frac {1}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{8 \, a^{2} b} + \frac {3 \, \sqrt {2} \left (a b^{3}\right )^{\frac {1}{4}} \log \left (\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{16 \, a^{2} b} - \frac {3 \, \sqrt {2} \left (a b^{3}\right )^{\frac {1}{4}} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{16 \, a^{2} b} + \frac {\sqrt {x}}{2 \, {\left (b x^{2} + a\right )} a} \]

input
integrate(1/(b*x^2+a)^2/x^(1/2),x, algorithm="giac")
 
output
3/8*sqrt(2)*(a*b^3)^(1/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) + 2*sqrt 
(x))/(a/b)^(1/4))/(a^2*b) + 3/8*sqrt(2)*(a*b^3)^(1/4)*arctan(-1/2*sqrt(2)* 
(sqrt(2)*(a/b)^(1/4) - 2*sqrt(x))/(a/b)^(1/4))/(a^2*b) + 3/16*sqrt(2)*(a*b 
^3)^(1/4)*log(sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a^2*b) - 3/16* 
sqrt(2)*(a*b^3)^(1/4)*log(-sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a 
^2*b) + 1/2*sqrt(x)/((b*x^2 + a)*a)
 
3.3.100.9 Mupad [B] (verification not implemented)

Time = 4.87 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.29 \[ \int \frac {1}{\sqrt {x} \left (a+b x^2\right )^2} \, dx=\frac {\sqrt {x}}{2\,a\,\left (b\,x^2+a\right )}+\frac {3\,\mathrm {atan}\left (\frac {b^{1/4}\,\sqrt {x}}{{\left (-a\right )}^{1/4}}\right )}{4\,{\left (-a\right )}^{7/4}\,b^{1/4}}+\frac {3\,\mathrm {atanh}\left (\frac {b^{1/4}\,\sqrt {x}}{{\left (-a\right )}^{1/4}}\right )}{4\,{\left (-a\right )}^{7/4}\,b^{1/4}} \]

input
int(1/(x^(1/2)*(a + b*x^2)^2),x)
 
output
x^(1/2)/(2*a*(a + b*x^2)) + (3*atan((b^(1/4)*x^(1/2))/(-a)^(1/4)))/(4*(-a) 
^(7/4)*b^(1/4)) + (3*atanh((b^(1/4)*x^(1/2))/(-a)^(1/4)))/(4*(-a)^(7/4)*b^ 
(1/4))